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The total syntheses of the bromotyrosine-derived natural products ianthelline, 5-bromoverongamine and
JBIR-44 are described and their cytotoxic activity in a cervical cancer (HeLa) cell line and human umbilical
vein endothelial cells (HUVECs) are reported.
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The Verongida order of marine sponges is a rich source of com-
pounds that are characterised by tyrosine metabolites where
dibromotyrosine is a signature motif.1 Such compounds have been
found to act as antimicrobials,2 antifoulants,3 antifungals4 and
antibacterials with varying degrees of potency.5 In terms of broad
anticancer activity, a large number of these compounds are cyto-
toxic and antiproliferative.6 However, some have been identified
as having specific antitubulin,7 antiangiogenic8 and protein inhib-
itory9 activity. For example, ceratamine A (1) and B (2), isolated
from Pseudoceratina sp. in 2003,7a were found to have antimitotic
properties against a breast cancer (MCF-7) cell line (IC50 10 lg/
mL) (Fig. 1). The treatment of MCF-7 cells with 1 also resulted in
an unusual bundling of cellular microtubules around cell nuclei.7b

Other related compounds such as the bisulfide mono-bromotyro-
sine derivatives bisaprasin and psammaplin A act as dual inhibitors
of histone deacetylase (HDAC) and DNA methyltransferase in the
low nanomolar range,9a and aplysamine-6 is one of a few small
molecules to be discovered that inhibits, in the low micromolar
range, the relatively new cancer target isoprenylcysteine carboxyl
methyltransferase (Icmt).9b In summary, bromotyrosine-derived
natural products are interesting chemical starting points for
exploring potential anticancer activities.

The anticancer activity of the three dibromotyrosine com-
pounds ianthelline (3), 5-bromoverongamine (4) and JBIR-44 (5)
ll rights reserved.

: +44 1223 336442.
(Fig. 1) has largely been unexplored owing to the small amount
of material obtained from the natural sources.

To enable access to all the three compounds a convenient syn-
thetic strategy involving a common a-oximino acid intermediate 6
was envisaged which would provide sufficient material for preli-
minary assays (Fig. 2). In previous reports ianthelline (3) (isolated
from Ianthella ardis, 1986) had been found to be moderately active
HO
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Figure 1. Structures of ceratamine A and B, ianthelline, 5-bromoverongamine and
JBIR-44.
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Figure 2. Retrosynthetic analysis for the proposed synthesis of 3, 4 and 5 involving
a common a-oximino acid intermediate 6.
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as an antibacterial and antifungal agent against Staphylococcus
aureus and Candida albicans.10 5-Bromoverongamine (4) (isolated
from Pseudoceratina sp., 1998) had been reported to inhibit the set-
tlement of barnacle larvae at 10 mg/mL (EC50 1.03 mg/mL)11 and
was bactericidal towards methicillin-resistant S. aureus (MRSA)
(MIC 0.0625–0.5 mg L�1).12 Both 3 and 4 are purported to share a
biogenetic relationship to the ceratamines and can be envisioned
as open chain cyclisation precursors. JBIR-44 (5) (isolated from
Psammaplysilla purpurea, 2009) was active against a cervical cancer
cell line (HeLa, IC50 3.7 lM).13

Synthetic routes to a-oximino acids and esters closely related to
6 have been widely discussed in the literature. In addition to the
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Scheme 1. Synthetic routes to ianthelline (3), 5-bromoverongamine (4) and JBIR-44
(5). Reagents and conditions: (a) MeI, K2CO3, acetone, reflux 6 h; (b) N-acetylgly-
cine, NaOAc, Ac2O, 120 �C, 6 h (82% over two steps); (c) Ba(OH)2�8H2O, 1,4-dioxane/
H2O (1:1) 60 �C, 1 h then PMBO–NH2�HCl, 14 h (54%); (d) DCC, HOBt, 7, iPr2EtN,
CH2Cl2 (81%); (e) AlCl3, anisole, CH2Cl2, 5 min, (78%); (f) DCC, HOBt, 8, iPr2EtN,
CH2Cl2/DMF, (41%); (g) AlCl3, anisole, CH2Cl2, 5 min (44%); (h) DCC, HOBt, 9, iPr2EtN,
CH2Cl2 (42%); (i) AlCl3, anisole, CH2Cl2, 5 min (85%).
most common approach via an azlactone intermediate,14 other
pathways include cyano ylide couplings15 and conversion of either
amines16 or a-keto compounds17 directly to their corresponding
oxime. One convenient approach adopts a Horner–Wadsworth–
Emmons reaction to couple a functionalised dimethylphosphate
to an aldehyde which has been used to good effect in the synthesis
of purealidin N18 and bastadin analogues.19 Full details of these
methods are discussed in a recent review.1a

As discussed above, access to all the three natural products 3, 4
and 5 was envisaged by elaborating the a-oximino acid derivative
6 (Fig. 2). Amide coupling of 6 with the amine salts 7, 8 or 9 fol-
lowed by the removal of the O-para methoxybenzyl (PMB) group
would furnish the desired bromotyrosine derivatives.

The a-oximino acid intermediate 6 was accessed in three steps
from the commercially available 3,5-dibromo-4-hydroxybenzalde-
hyde 10 (Scheme 1). Methylation of the phenol group of 10 with
methyl iodide under refluxing conditions20 and conversion of the
product, after isolation, to the corresponding azlactone 11 was
achieved by the treatment with N-acetylglycine and sodium ace-
tate in acetic anhydride (Erlenmeyer conditions).21 These two steps
proceeded in an overall yield of 82% and the geometry of 11 was
confirmed by X-ray crystallographic analysis to be the thermody-
namically favoured Z-isomer.22 The one-pot saponification of the
azlactone 11 with barium hydroxide octahydrate and subsequent
condensation with O-para methoxybenzyl hydroxylamine23 affor-
ded the oxime acid intermediate 6 on gram-scale in 54% yield.
The oxime acid 6 was then coupled with the appropriate amine
(7, 823 or 924) using N,N0-dicyclohexylcarbodiimide (DCC) and
N-hydroxybenzotriazole (HOBt) to furnish the O-PMB-protected
oximes 12, 13 and 14, respectively. Removal of the PMB group with
AlCl3 and anisole14b proceeded smoothly to furnish the bromotyro-
sine-derived products ianthelline (3), 5-bromoverongamine (4)
and JBIR-44 (5) in 78%, 44% and 85% yield, respectively.

The 1H and 13C NMR spectra for synthetic ianthelline (3) and
JBIR-44 (5) matched those of the natural materials. However, in
the case of synthetic 5 the original assignments of C-8 (dC 153.8)
and C-3 (dC 152.0) should be reversed on the basis of HMBC spec-
troscopy (see Supplementary data).25 In addition, whilst the 1H
NMR spectrum of synthetic 5-bromoverongamine (4) agreed with
that of the natural material, the assignment of the C-12 quaternary
centre (dC 134.0) in the natural material did not correlate with the
shift of C-12 (dC 135.9) in the synthetic material.26 However, X-ray
crystallographic analysis confirmed that the structure of synthetic
4 matched with that proposed for the natural material (Fig. 3). Fur-
thermore, this data also confirmed the E-geometry of the oxime
and the tautomeric form of the imidazole.27

In the MTS assays28 that were conducted (Table 1), JBIR-44 (5)
was found to be cytotoxic against HeLa cells (IC50 14 lM). This
was within the range reported for the natural material against
the same cell line (IC50 3.7 lM). Ianthelline (3) was moderately
Figure 3. X-ray structure of 5-bromoverongamine (4).



Table 1
Cytotoxic activities of natural products 3, 4, and 5 against HeLa and HUVEC cell lines

Compound Cell line [IC50 (lM)]

HeLa HUVEC

Ianthelline (3) 35 74
5-Bromoverongamine (4) >50 36
JBIR-44 (5) 14 24

4814 J. W. Shearman et al. / Tetrahedron Letters 51 (2010) 4812–4814
cytotoxic (IC50 35 lM) and 5-bromoverongamine (4) was the least
active (IC50 >50 lM). Since the related dibromotyrosine derivative
aeroplysinin-1 has been reported to inhibit the proliferation of the
bovine arterial endothelial cells (IC50 �2 lM),29 it was also of inter-
est to investigate the activity against endothelial cells. To this end,
an xCELLigence assay using human umbilical vein endothelial cells
(HUVECs) was conducted and all the three compounds (Table 1)
were found to be cytotoxic to HUVECs in the micromolar range
(IC50 24–74 lM).

In conclusion, the total syntheses of the bromotyrosine-derived
products ianthelline (3), 5-bromoverongamine (4) and JBIR-44 (5),
obtained in five steps from the commercially available aldehyde
10, have been reported. Ianthelline and JBIR-44 exhibit anticancer
activity in HeLa cells and all the three compounds were cytotoxic
towards HUVECs. In addition, this short synthetic route will allow
for rapid development of analogues to explore structure–activity
relationships.
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